Optimal design of an electrochemical reactor for blackwater treatment

TitleOptimal design of an electrochemical reactor for blackwater treatment
Publication TypeJournal Article
Year of Publication2020
AuthorsSiva Varigala, Srinivas Krishnaswamy, Chandra P. Lohia, Meghan Hegarty‐Craver, Sonia Grego, Michael Luettgen, and Clement A. Cid
JournalWater Environment Research
Volume6210112
Issue333
Date PublishedMay-07-2020
ISSN1061-4303
Keywordsblackwater treatment, electrode cleaning, mineral deposits, reverse polarity, uniform mixing
Abstract

Electrolysis of blackwater for disinfection and nutrient removal is a portable and scalable technology that can lessen the need for cities to construct large‐scale wastewater treatment infrastructure and enable the safe onsite reuse of blackwater. Several systems for treating wastewater from single toilets are described in the literature, but there are few examples of systems designed to use electrolysis to treat blackwater from nearby toilets, which is a situation more common in densely packed urban living environments. In order to scale a single toilet electrolysis system to one that could service multiple toilets, computational fluid dynamic analysis was used to optimize the electrochemical reactor design, and laboratory and field‐testing were used to confirm results. Design efforts included optimization of the reactor shape and mixing to improve treatment efficiency, as well as automated cleaning and salt injection to reduce maintenance and service requirements.

URLhttps://onlinelibrary.wiley.com/doi/abs/10.1002/wer.1374
DOI10.1002/wer.1374
Short TitleWater Environment Research